JNK1 inhibits GluR1 expression and GluR1-mediated calcium influx through phosphorylation and stabilization of Hes-1.
نویسندگان
چکیده
The GluR1 subunit of the AMPA receptor plays an important role in excitatory synaptic transmission and synaptic plasticity in the brain, but the regulation mechanism for GluR1 expression is largely unknown. Hairy and enhancer of split 1 (Hes-1) is a mammalian transcription repressor that regulates neuronal differentiation and development, but the role of Hes-1 in differentiated neurons is also less known. Here, we examined the molecular mechanism in regulation of GluR1 expression in rat cultured cortical neurons. We found that Hes-1 suppressed GluR1 promoter activity and decreased GluR1 expression through direct binding to the N-box and through preventing Mash1/E47 from binding to the E-box of GluR1 promoter. We also found that Hes-1 could be regulated by c-Jun N-terminal kinase (JNK1). JNK1 directly phosphorylates Hes-1 at Ser-263. Furthermore, JNK1 phosphorylation of Hes-1 stabilized the Hes-1 protein and enhanced the suppressing effect of Hes-1 on GluR1 expression. These effects were demonstrated both in the soma and at the synapse. Moreover, this JNK1-mediated signaling pathway was found to inhibit AMPA-evoked calcium influx in cortical neurons and this regulation mechanism is Notch independent. Here, we provided the first evidence that Hes-1 plays an important role in synaptic function in differentiated neurons. We also identified a novel JNK1-Hes-1 signaling pathway that regulates GluR1 expression involved in synaptic function in rat cortical neurons.
منابع مشابه
Regulation of GluR1 by the A-kinase anchoring protein 79 (AKAP79) signaling complex shares properties with long-term depression.
Second messengers regulate synaptic plasticity by influencing the balance between kinase and phosphatase activity. One target of this balance is the phosphorylation state of the AMPA receptor glutamate receptor 1 (GluR1) subunit. Hippocampal long-term depression (LTD) is a calcium-dependent downregulation of synaptic AMPA receptor currents associated with dephosphorylation of Ser845, a cAMP-dep...
متن کاملStabilization of Ca2+-permeable AMPA receptors at perisynaptic sites by GluR1-S845 phosphorylation.
AMPA receptor (AMPAR) channel properties and function are regulated by its subunit composition and phosphorylation. Certain types of neural activity can recruit Ca(2+)-permeable (CP) AMPARs, such as GluR1 homomers, to synapses likely via lateral diffusion from extrasynaptic sites. Here we show that GluR1-S845 phosphorylation can alter the subunit composition of perisynaptic AMPARs by providing ...
متن کاملNMDA receptor activation dephosphorylates AMPA receptor glutamate receptor 1 subunits at threonine 840.
Phosphorylation-dependent changes in AMPA receptor function have a crucial role in activity-dependent forms of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD). Although three previously identified phosphorylation sites in AMPA receptor glutamate receptor 1 (GluR1) subunits (S818, S831, and S845) appear to have important roles in LTP and LTD, little is kno...
متن کاملHydrogen Sulfide Promotes Surface Insertion of Hippocampal AMPA Receptor GluR1 Subunit via Phosphorylating at Serine-831/Serine-845 Sites Through a Sulfhydration-Dependent Mechanism.
AIMS Hydrogen sulfide (H2 S) has been widely accepted as a gas neuromodulator to regulate synaptic function. Herein, we set out to determine the effect of H2 S on α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) and its mechanism. METHODS BS(3) protein cross-linking, Western blot, patch clamp, and biotin-switch assay. RESULTS Bath application of H2 S donor NaHS (50 and ...
متن کاملGluR2 knockdown reveals a dissociation between [Ca2+]i surge and neurotoxicity.
Reduction in GluR2 subunit expression and subsequent increases in AMPA receptor mediated Ca(2+) currents were postulated to exacerbate glutamate neurotoxicity following seizures or global ischemia. To directly test the effects of shifting the GluR1/GluR2 subunit ratio on excitotoxicity, GluR2 antisense deoxyoligonucleotides (AS-ODNs) were applied to dissociated hippocampal cultures for 1-8 days...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 5 شماره
صفحات -
تاریخ انتشار 2012